miércoles, 29 de abril de 2009

martes, 28 de abril de 2009




Modelo Atómico actual

Entre los conocimientos actuales o no sobre el átomo, que han mantenido su veracidad, se consideran los siguientes:
1. La presencia de un núcleo atómico con las partículas conocidas, la casi totalidad de la masa atómica en un
volumen muy pequeño.
2. Los estados estacionarios o niveles de energía fundamentales en los cuales se distribuyen los electrones de acuerdo a su contenido energético.
3. La dualidad de la materia (
carácter onda-partícula), aunque no tenga consecuencias prácticas al tratarse de objetos de gran masa. En el caso de partículas pequeñas (electrones) la longitud de onda tiene un valor comparable con las dimensiones del átomo.
4. La
probabilidad en un lugar de certeza, en cuanto a la posición, energía y movimiento de un electrón, debido a la imprecisión de los estudios por el uso de la luz de baja frecuencia.
Fue Erwin Schodinger, quien ideó el modelo atómico actual, llamado "Ecuación de Onda", una fórmula
matemática que considera los aspectos anteriores. La solución de esta ecuación, es la función de onda (PSI), y es una medida de la probabilidad de encontrar al electrón en el espacio. En este modelo, el área donde hay mayor probabilidad de encontrar al electrón se denomina orbital.
<> El valor de la
función de onda asociada con una partícula en movimiento esta relacionada con la probabilidad de encontrar a la partícula en el punto (x,y,z) en el instante de tiempo t.
<> En general una onda puede tomar
valores positivos y negativos. una onda puede representarse por medio de una cantidad compleja.
Piense por ejemplo en el campo eléctrico de una onda electromagnética. Una probabilidad negativa, o compleja, es algo sin sentido. Esto significa que la función de onda no es algo observable. Sin embargo el módulo (o cuadrado) de la función de onda siempre es real y positivo. Por esto, a se le conoce como la
densidad de probabilidad.
La función de onda depende de
los valores de tres (03) variables que reciben la denominación de números cuánticos. Cada conjunto de números cuánticos, definen una función específica para un electrón.
Modelo Atómico de Rutherford

Basado en los resultados de su trabajo, que demostró la existencia del núcleo atómico, Rutherford sostiene que casi la totalidad de la masa del átomo se concentra en un núcleo central muy diminuto de carga eléctrica positiva. Los electrones giran alrededor del núcleo describiendo órbitas circulares. Estos poseen una masa muy ínfima y tienen carga eléctrica negativa. La carga eléctrica del núcleo y de los electrones se neutralizan entre sí, provocando que el átomo sea eléctricamente neutro.
El modelo de Rutherford tuvo que ser abandonado, pues el
movimiento de los electrones suponía una pérdida continua de energía, por lo tanto, el electrón terminaría describiendo órbitas en espiral, precipitándose finalmente hacia el núcleo. Sin embargo, este modelo sirvió de base para el modelo propuesto por su discípulo Neils Bohr, marcando el inicio del estudio del núcleo atómico, por lo que a Rutherford se le conoce como el padre de la era nuclear.
Ernest Rutherford estudió los componentes de la radiación que ocurre espontáneamente en la Naturaleza. A continuación se presenta una tabla resumiendo las características de estos componentes:
En 1900 Rutherford, con la colaboración de Geiger Marsden, soporta y verifica su teoría con el experimento, hoy muy famoso, de la lámina de oro. El experimento era simple, bombardearon una placa de oro muy delgada con partículas (ALFA) procedentes de una fuente radioactiva. Colocaron una pantalla de Sulfuro de Zinc fluorescente por detrás de la capa de oro para observar la dispersión de las partículas alfa en ellas. Según se
muestra en la siguiente figura:
Lo anterior demostró, que la dispersión de partículas alfa con carga positiva, era ocasionada por repulsión de centros con carga positiva en la placa de oro, igualmente se cumplía con placas de
metales distintos, pudiéndose concluir que cada átomo contenía un centro de masa diminuto con carga positiva que denomino núcleo atómico. La mayoría de las partículas alfa atraviesan las placas metálicas sin desviarse, porque los átomos están constituidos, en su mayoría, por espacios vacíos colonizado tan sólo por electrones muy ligeros. Las pocas partículas que se desvían son las que llegan a las cercanías de núcleos metálicos pesados con cargas altas (Figura N° 03).
Gracias a estos desarrollos experimentales de Rutherford, éste pudo determinar las magnitudes de las cargas positivas de los núcleos atómicos. Los cálculos que se basan en los resultados del experimento indican que el diámetro de la "porción desocupada" del átomo es de 10.000 a 100.000 veces mayor que el diámetro del núcleo.
Aspectos más importantes del Modelo atómico de Ernest Rutherford:
El átomo posee un núcleo central en el que su masa y su carga positiva.
El resto del átomo debe estar prácticamente vacío, con los electrones formando una corona alrededor del núcleo.
La neutralidad del átomo se debe a que la carga positiva total presente en el núcleo, es igualada por el número de electrones de la corona.
Cuando los electrones son obligados a salir, dejan a la estructura con carga positiva (explica los diferentes rayos).
El átomo es estable, debido a que los electrones mantienen un giro alrededor del núcleo, que genera una fuerza centrifuga que es igualada por la fuerza eléctrica de atracción ejercida por el núcleo, y que permite que se mantenga en su orbita.
El valor de la cantidad de energía contenida en un fotón depende del tipo de radiación (de la longitud de onda). En la medida que la longitud de onda se hace menor, la cantidad de energía que llevan es mayor.
En la región 7.5x1014 hasta 4.3x10-14 , se encuentra el espectro visible, con los
colores violeta, azul, verde, amarillo y rojo.
Las regiones donde las frecuencias es mayor (longitud de onda es menor), el contenido energético de los fotones, es grande en comparación con otras zonas.
En el caso de la
luz ultravioleta (U.V.) sus radiaciones no se perciben a simple vista, pero conocemos su alto contenido energético al actuar como catalizador en numerosos procesos químicos.
= Longitud de onda: Distancia entre dos crestas en una onda (Longitud de un ciclo)
C =
Velocidad de la luz (2.998 x 108 cm/seg)
= Frecuencia: Número de
ondas que pasan por un punto en un segundo.
Modelo Atómico de Dalton

Aproximadamente por el año 1808, Dalton define a los átomos como la unidad constitutiva de los elementos (retomando las ideas de los atomistas griegos). Las ideas básicas de su teoría, publicadas en 1808 y 1810 pueden resumirse en los siguientes puntos:

La materia está formada por partículas muy pequeñas para ser vistas, llamadas átomos.
Los átomos de un elemento son idénticos en todas sus propiedades, incluyendo el peso.
Diferentes elementos están formados por diferentes átomos.
Los compuestos químicos se forman de la combinación de átomos de dos o más elementos, en un átomo compuesto; o lo que es lo mismo, un compuesto químico es el resultado de la combinación de átomos de dos o más elementos en una proporción numérica simple.
Los átomos son indivisibles y conservan sus características durante las reacciones químicas.
En cualquier reacción química, los átomos se combinan en proporciones numéricas simples.
La separación de átomos y la unión se realiza en las reacciones químicas. En estas reacciones, ningún átomo se crea o destruye y ningún átomo de un elemento se convierte en un átomo de otro elemento.
A pesar de que la teoría de Dalton era errónea en varios aspectos, significó un avance cualitativo importante en el camino de la comprensión de la estructura de la materia. Por supuesto que la aceptación del modelo de Dalton no fue inmediata, muchos científicos se resistieron durante muchos años a reconocer la existencia de dichas partículas.

Además de sus postulados Dalton empleó diferentes símbolos para representar los átomos y los átomos compuestos, las moléculas.

Sin embargo, Dalton no elabora ninguna hipótesis acerca de la estructura de los átomos y habría que esperar casi un siglo para que alguien expusiera una teoría acerca de la misma.

Otras Leyes que concordaban con la teoría de Dalton:

Ley de la Conservación de la Masa: La Materia no se crea ni se destruye, sólo se transforma.
Ley de las Proporciones Definidas: Un Compuesto Puro siempre contiene los mismos elementos combinados en las mismas proporciones en masa.
Ley de las Proporciones Múltiples: Cuando dos elementos A y B forman más de un compuesto, las cantidades de A que se combinan en estos compuestos, con una cantidad fija de B, están en relación de números pequeños enteros.
Modelo Atómico de Thomson

Modelo atómico de Sommerfeld


Es un modelo atómico hecho por el físico alemán Arnold Sommerfeld (1868-1951) que básicamente es una generalización relativista del modelo atómico de Bohr (1913).
El modelo atómico de
Bohr funcionaba muy bien para el átomo de hidrógeno. Sin embargo, en los espectros realizados para átomos de otros elementos se observaba que electrones de un mismo nivel energético tenían distinta energía, mostrando que algo andaba mal en el modelo. conclusión fue que dentro de un mismo nivel energético existían subniveles.
Además desde el punto de vista teórico, Sommerfeld había encontrado que en ciertos átomos las velocidades de los electrones alcanzaban una fracción apreciable de la
velocidad de la luz. Sommerfeld estudió la cuestión para electrones relativistas.
En 1916, modificó el
modelo atómico de Bohr, en el cual los electrones sólo giraban en órbitas circulares, al decir que también podían girar en órbitas elípticas. Todavía Chadwick no había descubierto los neutrones, por eso en el núcleo sólo se representan, en rojo, los protones.
Este conocimiento dio lugar a un nuevo número cuántico: “el número cuántico azimutal”, que determina la forma de los orbitales, se lo representa con la letra “ l “ y toma valores que van desde 0 hasta n-1.
Valor Subnivel “ l “ Nombre 0 s sharp 1 p principal 2 d diffuse 3 f fundamental
Sommerfeld perfecciono el modelo atómico de Bohr intentando paliar los dos principales defectos de este. Para hacer coincidir las frecuencias calculadas con las experimentales, Sommerfeld postula que el núcleo del atómo no permanece inmóvil, sino que tanto el núcleo como el electrón se mueven alrededor del centro de masas del sistema, que estará situado muy próximo al núcleo.
Para explicar el desdoblamiento de las líneas espectrales, observando al emplear espectroscopios de mejor calidad, Sommerfeld supone que las orbitas del electrón pueden ser circulares y elípticas. Introduce el número cuántico secundario o azimutal, en la actualidad llamado l, que tiene los valores 0, 1, 2,…(n-1), e indica el momento angular del electrón en la orbita en unidades de , determinando los subniveles de energía en cada nivel cuántico y la excentricidad de la orbita.

En 1916, Arnold Sommerfeld, con la ayuda de la relatividad de Albert Einstein, hizo las siguientes modificaciones al modelo de Bohr:
Los electrones se mueven alrededor del nucleo en orbitas circulares o elípticas.
A partir del segundo nivel energético existen dos o más subniveles en el mismo nivel.
El electrón es una corriente eléctrica minúscula.
En consecuencia el modelo atómico de Sommerfeld es una generalización del modelo atómico de Bohr desde el punto de vista relativista, aunque no pudo demostrar las formas de emisión de las órbitas elípticas, solo descartó su forma circular.
Modelo atómico de Bohr


Diagrama del modelo atómico de Bohr.
El modelo atómico de Bohr o de Bohr-Rutherford es un modelo cuantizado del átomo que
Bohr propuso en 1913 para explicar cómo los electrones pueden tener órbitas estables alrededor del núcleo. Este modelo planetario es un modelo funcional que no representa el átomo (objeto físico) en sí sino que explica su funcionamiento por medio de ecuaciones.
Niels Bohr se basó en el átomo de hidrógeno para realizar el modelo que lleva su nombre. Bohr intentaba realizar un modelo atómico capaz de explicar la estabilidad de la materia y los espectros de emisión y absorción discretos que se observan en los gases. Describió el átomo de hidrógeno con un protón en el núcleo, y girando a su alrededor un electrón. El modelo atómico de Bohr partía conceptualmente del modelo atómico de Rutherford y de las incipientes ideas sobre cuantización que habían surgido unos años antes con las investigaciones de Max Planck y Albert Einstein. Debido a su simplicidad el modelo de Bohr es todavía utilizado frecuentemente como una simplificación de la estructura de la materia.
En este modelo los electrones giran en órbitas circulares alrededor del núcleo, ocupando la órbita de menor energía posible, o la órbita más cercana posible al núcleo. El
electromagnetismo clásico predecía que una partícula cargada moviéndose de forma circular emitiría energía por lo que los electrones deberían colapsar sobre el núcleo en breves instantes de tiempo. Para superar este problema Bohr supuso que los electrones solamente se podían mover en órbitas específicas, cada una de las cuales caracterizada por su nivel energético. Cada órbita puede entonces identificarse mediante un número entero n que toma valores desde 1 en adelante. Este número "n" recibe el nombre de Número Cuántico Principal.
Bohr supuso además que el
momento angular de cada electrón estaba cuantizado y sólo podía variar en fracciones enteras de la constante de Planck. De acuerdo al número cuántico principal calculó las distancias a las cuales se hallaba del núcleo cada una de las órbitas permitidas en el átomo de hidrógeno.
Estos niveles en un principio estaban clasificados por letras que empezaban en la "K" y terminaban en la "Q". Posteriormente los niveles electrónicos se ordenaron por números. Cada órbita tiene electrones con distintos niveles de energía obtenida que después se tiene que liberar y por esa razón el electrón va saltando de una órbita a otra hasta llegar a una que tenga el espacio y nivel adecuado, dependiendo de la energía que posea, para liberarse sin problema y de nuevo volver a su órbita de origen.
Sin embargo no explicaba el espectro de estructura fina que podría ser explicado algunos años más tarde gracias al
modelo atómico de Sommerfeld. Históricamente el desarrollo del modelo atómico de Bohr junto con la dualidad onda-corpúsculo permitiría a Erwin Schrödinger descubrir la ecuación fundamental de la mecánica cuántica.

Modelo atómico de Thomson

Representación esquemática del modelo de Thompson.
El modelo atómico de Thompson, también conocido como el modelo del puding, es una teoría sobre la estructura
atómica propuesta por Joseph John Thompson, descubridor del electrón, antes del descubrimiento del protón y del neutrón. En dicho modelo, el átomo está compuesto por electrones de carga negativa en un átomo positivo, como pasas en un puding. Se pensaba que los electrones se distribuían uniformemente alrededor del átomo. En otras ocasiones, en lugar de una sopa de carga positiva se postulaba con una nube de carga positiva.
Dado que el átomo no deja de ser un sistema material que contiene una cierta cantidad de energía interna, ésta provoca un cierto grado de vibración de los electrones contenidos en la estructura atómica. Desde este punto de vista, puede interpretarse que el modelo atómico de Thompson es un modelo dinámico como consecuencia de la movilidad de los electrones en el seno de la citada estructura.
Si hacemos una interpretación del modelo atómico desde un punto de vista más macroscópico, puede definirse una estructura estática para el mismo dado que los electrones se encuentran inmersos y atrapados en el seno de la masa que define la carga positiva del átomo.
Dicho modelo fue superado luego del
experimento de Rutherford, cuando se descubrió el núcleo del átomo. El modelo siguiente fue el modelo atómico de Rutherford.